The STEM+Computing Partnership (STEM+C) program seeks to advance multidisciplinary integration of computing in STEM teaching and learning through applied research and development across one or more domains. This project addresses the challenge of how to prepare undergraduate elementary preservice science teachers to learn methods involved in computational thinking (CT) in order to support integration of CT into their elementary STEM instruction. Such early integration of CT in STEM learning will provide the foundation that young children need in computational thinking when their interests and competencies are being formed. Additionally, early integration of CT in STEM may increase the number and diversity of students interested in enrolling in high school computer science courses (and thus in computer science careers). The first step is to improve the preparation that elementary teachers receive about CT to increase both the quantity and quality of exposure for elementary-aged children.
Show Full Abstract
The STEM+Computing Partnership (STEM+C) program seeks to advance multidisciplinary integration of computing in STEM teaching and learning through applied research and development across one or more domains. This project addresses the challenge of how to prepare undergraduate elementary preservice science teachers to learn methods involved in computational thinking (CT) in order to support integration of CT into their elementary STEM instruction. Such early integration of CT in STEM learning will provide the foundation that young children need in computational thinking when their interests and competencies are being formed. Additionally, early integration of CT in STEM may increase the number and diversity of students interested in enrolling in high school computer science courses (and thus in computer science careers). The first step is to improve the preparation that elementary teachers receive about CT to increase both the quantity and quality of exposure for elementary-aged children. The overall goal of this project, therefore, is to transform elementary school teacher practice by integrating CT strategically and significantly into science instruction for all young learners, thereby promoting a more numerous and more diverse citizenry that is knowledgeable and interested in computing. Findings and materials from this project will be disseminated to a broad group of stakeholders, including policymakers, researchers, teacher educators, and K-12 personnel and community.
This project will address the fundamental question, "What strategies are most effective in integrating computational thinking effectively into elementary preservice teachers' pedagogical preparation experiences in science in order to cultivate and improve access to CT for all students?" The project team will design, implement, and test pedagogical modules for developing CT in a preservice teachers' science methods pedagogical course. Further, an extracurricular Science Teaching CT Inquiry Group will be designed to enhance and broaden the level of understanding of CT for both teacher interns and their mentor teachers, including how computer applications support the teaching of science and how CT is a necessary science practice for all elementary-aged students. This inquiry group will be led by an interdisciplinary team with a variety of expertise, including computer scientists, science educators, educational technologists, and graduates of the elementary education program (during the 2nd year of the project). Instruction in how to convey to young learners the integral nature of CT for STEM career awareness and readiness will be included throughout the curriculum innovation. Because this study will use a design-based methodology, design and testing of the resources and measures will be conducted cyclically and concurrently. This program of research will use a rigorous mixed methods research approach to collect both qualitative and quantitative data that will be triangulated to develop and analyze resources, measures, and processes. As such, this project seeks to engage in exploratory, basic research to provide empirical support in developing a set of resources (science methods experiences), tools (a framework for integrating CT in undergraduate science teacher pedagogy education), and measures (assessments for CT understanding and CT STEM career awareness).
Show Short Abstract